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Discrete vortex solitons
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Localized states in the discrete two-dimensional~2D! nonlinear Schro¨dinger equation is found: vortex
solitons with an integer vorticityS. While Hamiltonian lattices do not conserve angular momentum or the
topological invariant related to it, we demonstrate that the soliton’s vorticity may be conserved as a dynamical
invariant. Linear stability analysis and direct simulations concur in showing that fundamental vortex solitons,
with S51, are stable if the intersite couplingC is smaller than some critical valueCcr

(1) . At C.Ccr
(1) , an

instability sets in through a quartet of complex eigenvalues appearing in the linearized equations. Direct
simulations reveal that an unstable vortex soliton withS51 first splits into two usual solitons withS50 ~in
accordance with the prediction of the linear analysis!, but then an instability-induced spontaneous symmetry
breaking takes place: one of the secondary solitons withS50 decays into radiation, while the other one
survives. We demonstrate that the usual (S50) 2D solitons in the model become unstable, atC.Ccr

(0)

'2.46Ccr
(1) , in a different way, via a pair of imaginary eigenvaluesv which bifurcate into instability through

v50. Except for the lower-energyS51 solitons that are centered on a site, we also construct ones which are
centered between lattice sites which, however, have higher energy than the former. Vortex solitons withS
52 are found too, but they are always unstable. Solitons withS51 andS50 can form stable bound states.

DOI: 10.1103/PhysRevE.64.026601 PACS number~s!: 41.20.Jb, 63.20.Pw
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Nonlinear lattice equations naturally arise as models
various physical systems, being also an object of interes
their own right, as an important class of nonlinear dynami
systems. A fundamental lattice model is represented by
discrete nonlinear Schro¨dinger ~DNLS! equation with cubic
on-site nonlinearity, which finds its most straightforward a
plications, both theoretical@1# and experimental@2#, to trans-
verse dynamics in arrays of optical waveguides~fibers! with
Kerr nonlinearity. In this work, we are dealing with the tw
dimensional~2D! self-focusing DNLS equation for comple
variablesum,n :

i u̇m,n1C~um11,n1um,n111um,n211um21,n24um,n!

1uum,nu2um,n50, ~1!

C being a real coupling constant. As has been recently d
onstrated~see Refs.@3,4# and references therein!, this and
similar models support stable solitons~localized stationary
states! of the formum,n(t)5exp(iLt)Um,n , with Um,n deter-
mined by a stationary version of Eq.~1!,

C~Um11,n1Um,n111Um,n211Um21,n24Um,n!

1uUm,nu2Um,n5LUm,n . ~2!

In the soliton solution, Um,n vanish as @(m2

1n2)#1/4exp@2A(L/C)(m21n2)# as umu,unu→`, which is
suggested by analogy with the continuum limit~the
asymptotic expression for the far tail of the soliton mu
always have a quasicontinuous form!. Obviously, the cou-
pling constantC may be set equal to 1 by means of a resc
ing. However, we prefer to keepC as a control paramete
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fixing L to a constant value; unless indicated otherwise,L
[0.32 for the numerical results given below. An advanta
of this choice is that it allows us to investigate the crosso
to the continuous limit, takingC→`.

In many respects, the 2D lattice solitons found in Re
@3,4# are similar to their earlier studied 1D counterpa
@1,2,5#. This similarity is in drastic contrast with what i
known about the continuous NLS equation: in that case,
commonly known 1D solitons are stable, while axisymmet
2D solitons are not, as the 2D self-focusing NLS equat
with cubic nonlinearity is subject to wave collapse@6#. How-
ever, the continuous 2D NLS equation can be easily mo
fied, by adding a quintic self-defocusing nonlinear ter
which makes the axisymmetric solitons in the correspond
cubic-quintic~CQ! model stable@7#.

An objective of this work is to produce another type
stable 2D solitons in the DNLS model, viz., a discretevortex
soliton ~VS!, which is an exponentially localized bright sol
ton with a vortex nested inside it. We stress its differen
from discrete analogs of the well-known optical vortices@8#,
which exist on a finite background, i.e., are solitons of t
dark type. Bright VS’s~alias vortex rings! are known in vari-
ous continuum models. In the 2D cubic NLS equation th
are definitely unstable, as well as the usual~nonvortex! soli-
tons, due to collapse. In the 2D NLS equation of the C
type, a vortex ring may be~numerically! stable, provided that
its outer radius is very large@9#. Vortex rings in the 3D
version of the CQ model~spinning light bullets! have also
been studied in detail@10,11#.

While the stability of VS’s in 2D~and 3D! continuum
models is an issue, the possibility of theirexistenceis obvi-
ous, as a 2D complex solution can always be sought fo
©2001 The American Physical Society01-1
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FIG. 1. An example of a sta-
tionary fundamental vortex soliton
(S51) in the 2D discrete NLS
equation forC50.05. The top left
and right panels show, respec
tively, the absolute value and
phase~in units of p) of Um,n .
The bottom left and right panels
display the real and imaginary
parts of the solution. All the plots
show the relevant quantities in
terms of gray-scale contour plots
It should be noted that in this fig
ure, as well as in Figs. 2 and 4, th
lines on top of the gray scale are
mere artifact of the plotting pro-
gram ~denoting points of the field
with equal concentration where
the color map shading changes!.
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the form u5U(r )exp(iLt1iSu), where r and u are polar
coordinates,U(r ) is a real amplitude, and the integer vorti
ity ~‘‘spin’’ ! S is a topological invariant. The isotropy o
continuous models gives rise to conservation of angular
mentum, the value of which for VS’s is proportional toS
@11#. On the contrary, the very existence of vortex solitons
discrete models, with their broken rotational invariance, i
nontrivial issue. Of course, dynamical stability of discre
VS’s, if any, will be a nontrivial problem too. The resul
presented below show that VS’s with different values of v
ticity do exist in the 2D DNLS equation, thefundamental
one, with S51, being stable in a finite parameter rang
while higher-order VS’s withS>2 are always unstable. No
tice that this result is reminiscent of the stability of 2D finit
background~‘‘dark’’ ! vortices in the 2D continuous NLS
@12# and complex Ginzburg-Landau equations@13#. Thus, a
qualitative conclusion is that, while vorticity is no longer
topological invariant in 2D lattice models, it may be, instea
a dynamical invariant. By this term, we mean that the tim
evolution of the lattice dynamics preserves the vortic
present in the configuration.

Numerical solution of the stationary equation~2!, aimed
at a search for a soliton of a given type by means of New
iterations, requires an appropriate initialAnsatz. If one is
looking for a soliton without vorticity, an appropriateAnsatz
that can be used in discrete~as well as in continuous! models
is often provided for by the variational approximation; se
e.g., Refs.@14# and @3#. However, it is not obvious how to
select an appropriate vorticity-carryingAnsatzin the 2D lat-
tice. Rather than trying to emulate the continuous funct
exp(iSu) which accounts for the vorticity, we used a simpl
and more~computationally! robust initialAnsatzin the case
of odd S. This choice preserves a fundamental property
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VS’s which is obvious in continuous models: separating
real and imaginary parts of the solution, Reu;cos(Su) and
Im u;sin(Su), one concludes that they are odd functions
the Cartesian coordinates, respectively,x and y. This sug-
gests that, in the discrete system, Reu and Im u must be,
respectively, odd functions of the lattice coordinatesm andn.
In this connection, it is necessary to mention that the DN
equation in 1D indeed gives rise toodd soliton solutions
~with u2n52un), which have no counterpart in the con
tinuum limit. Those solutions were investigated in detail
Refs.@5,15# under the name of ‘‘twisted localized modes.’’ I
fact, they may be regarded as bound states of two stron
overlapping fundamental~even! solitons with a phase differ-
encep between them. As has recently been demonstra
@16#, only bound states of this type may be stable in 1
lattices~while bound states with the phase difference 0
always unstable!.

We were able to find fundamental (S51) stationary vor-
tex solitons in the 2D lattice governed by Eq.~2!, starting
with a ‘‘dual-twisted’’ Ansatz that was a superposition o
localizedAnsätzefor Reum,n and Imum,n , ‘‘twisted’’ so that
Reu2m,n52Reum,n and Imum,2n52Im um,n . For the nu-
merical solution of Eq.~2!, the Newton methods and iterativ
ones based on treating the equation as a nonlinear eigenv
problem@4# were implemented. Note, however, an essen
difference between the casesS50 considered in@4# and S
51: in the former case,Um,n are real, while the vorticity
necessarily makes the solution complex.

Irrespective of other details, the iteration procedure wh
started from the ‘‘dual-twisted’’ initialAnsatzreadily con-
verged to a soliton which clearly kept the initial vorticity,S
51. A typical example of the thus obtained fundamental V
is shown in Fig. 1. Starting from a more sophisticatedAn-
1-2
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FIG. 2. An example of a sta-
tionary vortex soliton withS52
for C50.025. The four panels
show the same quantities as
Fig. 1.
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satz, it was also possible to produce stationary double vo
ces, i.e., solitons withS52, a typical example of which can
be seen in Fig. 2. An appropriate initialAnsatzfor the S
52 VS’s could be guessed, taking into account the even
odd parities of theS52 vortices with respect to rotations
respectively, throughp andp/2. TheAnsatzwhich initiated
iterations converging to the discrete VS withS52, displayed
in Fig. 2, had nonzero values of Reum,n solely along them
and n axes, and Imum,n was different from zero along th
diagonalsn56m.

The next issue is the stability of VS’s. Our stability inve
tigation is based on linear stability analysis around the
tionary solution, complemented by direct simulations of t
evolution of perturbed solitons. For the linear stability ana
sis, a perturbed solution was taken asum,n5exp(iLt)@Um,n
1am,n exp(2ivt)1bm,n exp(iv* t)#, v being an eigenvalue
The substitution of this into Eq.~1! and linearization in the
infinitesimal perturbation amplitudesam,n andbm,n leads to a
system of linear homogeneous equations, the computatio
the eigenvalues amounting to numerical diagonalization
the corresponding matrix.

Instability is accounted for by eigenvalues with a nonze
imaginary part. Because of the Hamiltonian nature of DNL
complex eigenvalues may appear in conjugate pairs or q
tets,uIm vu being the instability gain. It has been found th
the stability of theS51 VS depends on the value of th
coupling constantC, while theS52 solitons arealwayslin-
early unstable.

It is obvious that all VS’s, including the fundamental on
with S51, must be unstable atC sufficiently large, asC
→` implies a transition to the continuous 2D NLS equatio
in which any soliton is unstable. In accordance with this, o
computations show that, with the increase ofC, theS51 VS
02660
i-

d

-
e
-

of
f

o
,
r-

t

,
r

becomes unstable atC5Ccr
(1)'0.13, and it remains unstabl

for C.Ccr
(1) . In terms of the eigenvalues, a destabilizing b

furcation happens when a pair of purely real isolated eig
values, which bifurcated at a smaller value ofC from the
edge of the phonon eigenvalue band, collides with anot
isolated pair of real eigenvalues which originally exist
close to the origin but was gradually approaching the ba
The collision results in the appearance of a complex eig
value quartet, i.e., instability. An example of the spectrum
the complex plane of the eigenvalues, containing the
stable quartet, is shown in Fig. 3. It should be noted t
collisions inducing the generation of quartets of eigenval
are expected, since even for 1D ‘‘twisted’’ solitons, collisio
of isolated eigenvalues with the band eigenvalues of an~ap-
parently! opposite Krein sign lead to suchHopf-likebifurca-
tions @15#.

The usual (S50) soliton must also become unstable wi
the increase ofC, as its counterpart is unstable too in th
continuum limit@4#. It is natural to compare the instabilitie
of the vortex and usual solitons on the lattice. We have fou
that, atC'0.15, a pair of isolated real~stable! eigenvalues
6uvu splits off from the phonon band in the spectrum of t
S50 soliton. A destabilizing bifurcation takes place atC
5Ccr

(0)'0.32: the pair hits the origin and reappears in
purely imaginary form,6 i uvu. As concerns theS52 soliton,
its eigenvalue spectrum always contains at least one pu
imaginary pair.

The shape of eigenmodes related to unstable eigenva
is important too, as it determines the actual type of a per
bation that is going to destroy the soliton. Computatio
show that the unstable eigenmode of theS51 soliton, if any,
has a shape breaking the~discrete! symmetry of the unper-
1-3
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B. A. MALOMED AND P. G. KEVREKIDIS PHYSICAL REVIEW E64 026601
turbed soliton so as to split it into two parts. This is qu
similar to the unstable eigenmode of theS51 VS’s in the 2D
continuous NLS equation with CQ nonlinearity@11#. How-
ever, a drastic difference is that all VS’s, including the fu
damental ones withS51, are unstable in the latter mod
~although the instability may be very weak if the VS is ve
broad!, while in the discrete model~which contains no quin-
tic nonlinearity! there is a well-defined stability region fo
the VS’s withS51.

The stability of the VS’s withS51 atC,Ccr
(1)'0.13, and

their instability atC.Ccr
(1) was also verified by direct simu

FIG. 3. Eigenvaluesv of infinitesimal perturbations around th
unstable fundamental vortex soliton withS51 at C'0.13, just
above the onset of the instability. Shown is the spectral plane of
complex (v i) versus the real (v r) part of the eigenvalue.
02660
-

lations of the full nonlinear equation~1!, which used a
fourth-order Runge-Kutta integrator. In the former case,
solitons always remain unscathed for very long integrat
times. In the latter case, the growing instability at first sp
the VS into two usual (S50) solitons~see Fig. 4!, which
strongly resembles the development of the above-mentio
instability in the continuous CQ model. However, furth
development is quite different. As is seen in Fig. 4, in t
course of long evolution one of the secondaryS50 solitons
eventually dies, decaying into lattice phonons, while t
other one survives, which may be regarded as an instabi
induced spontaneous symmetry breaking. Thus, instea
two separatingS50 solitons, which is a generic outcome o
the instability in the 2D continuous CQ model@11#, in the
discrete model we end up with a single quiescentS50 soli-
ton ~which is corroborated by many other runs of the dire
simulations!. This outcome is possible because the discr
systems do not conserve angular momentum.

The outcome of the instability development forS52 VS’s
was also found by means of simulations. Eigenmodes rela
to the above-mentioned pair of imaginary eigenvalues, wh
are amenable to the instability of theS52 soliton, have a
shape~not shown here! suggesting that they will initiate
cleaving the soliton in two. Direct simulations comply wit
this expectation, demonstrating that the unstableS52 VS
splits into two S51 solitons. However, the thus-generat
nonstationary S51 vortices, unlike their stationary counte
parts, may be subject to a weak instability. Our simulatio
demonstrate that they eventually break up into complexe
S50 solitons. In this connection, it is relevant to recall th
in the 2D continuous CQ model,S52 VS’s split into four
S50 solitons which fly out in tangential directions@11#.
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g
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-

FIG. 4. Time evolution of the
unstableS51 vortex soliton. The
panels show snapshots of the ev
lution in terms of gray-scale con
tour plots of uUm,nu. The initial
configuration is not shown, as it is
very similar to that of Fig. 1. The
first snapshot is taken att5420
@time is measured in time units o
Eq. ~1!#, and the time interval be-
tween the snapshots isDt5100.
The initial breakup of the theS
51 vector soliton into twoS50
solitons, and subsequent breakin
of the symmetry between them
ending up with the survival of a
single S50 soliton, can be ob-
served. The initial condition con-
sisted of a small random perturba
tion on top of the exact
S51 soliton.
1-4
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DISCRETE VORTEX SOLITONS PHYSICAL REVIEW E64 026601
An additional important difference between theS50 and
S51 discrete solitons should be highlighted here. As is w
known @17–19#, when bistability is present for theS50
modes, unstable~‘‘broad’’ ! solitary waves coexist with stabl
~‘‘narrow’’ ! ones. On the contrary, the dynamics of vorte
like discrete solitons resemble those of their one-dimensio
counterpart, namely ‘‘twisted localized modes.’’ In particula
it is well known@15,16# that the component pulses in the re
and imaginary parts of such twisted modes repel each o
@see, e.g., Fig. 3 in Ref.@15# and Fig. 1~b! in Ref. @16##.
Therefore, a discrete vortex with maxima of the~absolute
value of the! real part at the lattice points (m21,n),(m
11,n) and of the imaginary part at (m,n11),(m,n21) has
larger energy than the vortex with maxima of the~absolute
values of the! real and imaginary parts, respectively, at t
points (m22,n),(m12,n) and (m,n12),(m,n22). Hence,
‘‘broader’’ discrete-vortex solutions are more energetica
favorable in this case.

The mode created here is by construction~i.e., by virtue
of the selection of the initial condition! one that is centered
on a lattice site. However as can be seen in Refs.@4,20#, an
additional type of a mode that is feasible forS50 solitons is
a so-called Page mode, namely, the one centered betw
lattice sites in both directions. A similar configuration c
also be constructed in the case of a vortex. In particular,
have constructed such vortex solitons by centering max
~of the absolute values! of the ‘‘dual-twisted’’ initial Ansatz
at the points (m,n),(m11,n11) for the real part and a
(m11,n),(m,n11) for the imaginary part of the solutio
@as opposed to centering them at (m21,n),(m11,n) and
(m,n11),(m,n21), respectively, in the solutions consid
ered above#. In agreement with the arguments mention
above, we have found that this Page-like mode has a hig
energy; hence, it is a less stable configuration. For exam
for C50.0125, the mode with absolute maxima of the du
twisted Ansatzat (m21,n),(m11,n) for Re(um,n) and at
(m,n11),(m,n21) for Im(um,n) had energy E5
20.20169, while the one with absolute maxima at (m
22,n),(m12,n) for Re(um,n) and at (m,n12),(m,n22)
for Im(um,n) had E520.20232 and the one with absolu
maxima at (m,n),(m11,n11) for Re(um,n) and at (m,n
11),(m11,n) for Im(um,n) had E520.20106. Three-
dimensional plots of the absolute value of the Page mod
well as of its real and imaginary part are given in Fig. 5.
should also be noted that, as the ‘‘broader’’ configuratio
are of lower~equilibrium! energy, the narrow ones, if appro
priately perturbed, can rearrange themselves into br
states, shedding the energy difference into kinetic energy
can be seen in Fig. 6 of Ref.@16#.

Last, since theS51 and S50 solitons may coexist, a
C,Ccr

(1) , as stable solutions of the 2D DNLS equation, it
natural to consider interactions between them~as well as
between two like solitons!. Detailed analysis of the interac
tions between solitons and their possible bound states in
present model will be presented elsewhere. Here, we
mention an essential finding: a usual soliton withS50 and a
fundamental VS with S51 can readily form a stable
bound state.
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dimensional nonlinear dynamical lattices, in the form of vo
tex solitons with an integer vorticityS. While Hamiltonian
lattices do not conserve angular momentum the topolog

FIG. 5. Three-dimensional profile of the absolute value~a!, real
part ~b!, and imaginary part~c!, of a Page-like mode forC
50.0125.
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charge related to it, our results show that vorticity may
conserved as a dynamical, rather than topological, invari
The fundamental vortex solitons withS51 are completely
stable if the intersite coupling constantC is smaller than a
critical value Ccr

(1) . At C.Ccr
(1) , an instability appears

through a quartet of complex eigenvalues in the lineari
equations. Direct simulations demonstrate that, if the vor
soliton is unstable, it first splits into two usual solitons wi
S50 in accordance with the prediction of the linear analys
then, one of them decays into radiation, while the other
survives. We have also demonstrated that theS50 solitons
become unstable atC.Ccr

(0) , with Ccr
(0)/Ccr

(1)'2.46, and their
route to instability is different from that forS51, being ac-
counted for by a pair of imaginary eigenvalues. Except
tt.
d

s.

t.
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the lower energy centered on site-discrete vortex solito
also higher-energy, Page-like ones centered between
were constructed. Vortex solitons withS52 were found too,
but they are always unstable.

The most realistic possibility to observe the vortex solit
predicted in this work is provided by a bunch of optic
fibers forming a rectangular lattice in the plane normal to
fibers. In principle, the vortex soliton in the latter syste
may also have a potential for the optical storage of data
that context, it may be quite important that there be a sta
localized configuration principally different from the ord
nary ~zero-vorticity! soliton.

We thank T. Kapitula for useful discussions.
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